Deep Dive on Deep Learning

Julien Simon
Principal Technical Evangelist, AI and Machine Learning

@julsimon
Agenda

• Deep Learning concepts

• Common architectures and use cases

• Apache MXNet

• Infrastructure for Deep Learning

• Demos along the way: MXNet, Gluon, Keras, TensorFlow, PyTorch 😊
Deep Learning concepts
The neuron

\[\sum_{i=1}^{l} x_i \ast w_i = u \]

"Multiply and Accumulate"

Activation functions

<table>
<thead>
<tr>
<th>Name</th>
<th>Plot</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identity</td>
<td>![Plot]</td>
<td>(f(x) = x)</td>
</tr>
<tr>
<td>Binary step</td>
<td>![Plot]</td>
<td>(f(x) = \begin{cases} 0 & \text{for } x < 0 \ 1 & \text{for } x \geq 0 \end{cases})</td>
</tr>
<tr>
<td>Logistic (n.a.k.a. Soft step)</td>
<td>![Plot]</td>
<td>(f(x) = \frac{1}{1 + e^{-x}})</td>
</tr>
<tr>
<td>TanH</td>
<td>![Plot]</td>
<td>(f(x) = \tanh(x) = \frac{2}{1 + e^{-2x}} - 1)</td>
</tr>
<tr>
<td>ArcTan</td>
<td>![Plot]</td>
<td>(f(x) = \tan^{-1}(x))</td>
</tr>
<tr>
<td>Softsign</td>
<td>![Plot]</td>
<td>(f(x) = \frac{x}{1 +</td>
</tr>
<tr>
<td>Rectified linear unit (ReLU) (^{[9]})</td>
<td>![Plot]</td>
<td>(f(x) = \begin{cases} 0 & \text{for } x < 0 \ x & \text{for } x \geq 0 \end{cases})</td>
</tr>
</tbody>
</table>

Neural networks

\[x = \begin{bmatrix}
 x_{11}, x_{12}, \ldots, x_{1I} \\
 x_{21}, x_{22}, \ldots, x_{2I} \\
 \vdots \\
 x_{m1}, x_{m2}, \ldots, x_{mI}
\end{bmatrix} \]

\[y = \begin{bmatrix}
 0,0,1,0,0,\ldots,0 \\
 1,0,0,0,0,\ldots,0 \\
 \vdots \\
 0,0,0,0,1,\ldots,0
\end{bmatrix} \]

One-hot encoding

Features

Samples

Labels

Categories
Neural networks

\[x = \begin{bmatrix} x_{11}, x_{12}, \ldots, x_{1l} \\ x_{21}, x_{22}, \ldots, x_{2l} \\ \vdots \\ x_{m1}, x_{m2}, \ldots, x_{ml} \end{bmatrix} \]

\[y = \begin{bmatrix} 2 \\ 0 \\ \vdots \\ 4 \end{bmatrix} \begin{bmatrix} 0,0,1,0,0,\ldots,0 \\ 1,0,0,0,0,\ldots,0 \\ \vdots \\ 0,0,0,0,1,\ldots,0 \end{bmatrix} \]

One-hot encoding

Accuracy = \frac{\text{Number of correct predictions}}{\text{Total number of predictions}}
Initially, the network will not predict correctly
\[f(X_1) = Y_1' \]

A loss function measures the difference between the real label \(Y_1 \) and the predicted label \(Y_1' \)
error = loss(\(Y_1, Y_1' \))

For a batch of samples:

\[
\text{batch error} = \sum_{i=1}^{\text{batch size}} \text{loss}(Y_i, Y_i')
\]

The purpose of the training process is to minimize error by gradually adjusting weights.
Training data set → Backpropagation → Trained neural network

Batch size
Learning rate
Number of epochs

Hyper parameters
Imagine you stand on top of a mountain with skis strapped to your feet. You want to get down to the valley as quickly as possible, but there is fog and you can only see your immediate surroundings. How can you get down the mountain as quickly as possible? You look around and identify the steepest path down, go down that path for a bit, again look around and find the new steepest path, go down that path, and repeat—this is exactly what gradient descent does.

Tim Dettmers
University of Lugano
2015

The « step size » depends on the learning rate

https://devblogs.nvidia.com/parallelforall/deep-learning-nutshell-history-training/
Local minima and saddle points

« Do neural networks enter and escape a series of local minima? Do they move at varying speed as they approach and then pass a variety of saddle points? Answering these questions definitively is difficult, but we present evidence strongly suggesting that the answer to all of these questions is no. »

Optimizers

SGD works remarkably well and is still widely used.

Adaptative optimizers use a variable learning rate.

Some even use a learning rate per dimension (Adam).

Validation data set (also called dev set)

Neural network in training

Prediction at the end of each epoch

This data set must have the same distribution as real-life samples, or else validation accuracy won’t reflect real-life accuracy.
This data set must have the same distribution as real-life samples, or else test accuracy won’t reflect real-life accuracy.
Early stopping

« Deep Learning ultimately is about finding a minimum that generalizes well, with bonus points for finding one fast and reliably », Sebastian Ruder
Common architectures and use cases
Convolutional Neural Networks (CNN)

Le Cun, 1998: handwritten digit recognition, 32x32 pixels

https://devblogs.nvidia.com/parallelforall/deep-learning-nutshell-core-concepts/
Extracting features with convolution

Convolution extracts features automatically. Kernel parameters are learned during the training process.
Downsampling images with pooling

Pooling shrinks images while preserving **significant** information.

Source: Stanford University
Object Detection

https://github.com/precedenceguo/mx-rcnn

https://github.com/zhreshold/mxnet-yolo
Object Segmentation

https://github.com/TuSimple/mx-maskrcnn
Text Detection and Recognition

https://github.com/Bartzi/stn-ocr
Face Detection

https://github.com/tornadomeet/mxnet-face

Face Recognition

LFW 99.80%+
Megaface 98%+
with a single model

https://github.com/deepinsight/insightface
https://arxiv.org/abs/1801.07698
Real-Time Pose Estimation

https://github.com/dragonfly90/mxnet_Realtime_Multi-Person_Pose_Estimation
Long Short Term Memory Networks (LSTM)

- A LSTM neuron computes the output based on the input and a previous state.
- LSTM networks have memory.
- They’re great at predicting sequences, e.g. machine translation.
Machine Translation

https://github.com/awslabs/sockeye
GAN: Welcome to the (un)real world, Neo

Generating new “celebrity” faces
https://github.com/tkarras/progressive_growing_of_gans

From semantic map to 2048x1024 picture
https://tcwang0509.github.io/pix2pixHD/
Wait! There’s more!

Models can also generate text from text, text from images, text from video, images from text, sound from video, 3D models from 2D images, etc.
Apache MXNet
Apache MXNet: Open Source library for Deep Learning

Programmable
Simple syntax, multiple languages

Portable
Highly efficient models for mobile and IoT

High Performance
Near linear scaling across hundreds of GPUs

Most Open
Accepted into the Apache Incubator

Best On AWS
Optimized for Deep Learning on AWS
mx. model. FeedForward
mx. model. fit
mx. sym. SoftmaxOutput

Anatomy of a Deep Learning Model

Input: 1 1 1
 1 0 1
 0 0 0

3
mx. sym. Convolution(data, kernel=(5, 5), num_filter=20)
mx. sym. FullyConnected(data, num_hidden=128)

mx. sym. Pooling(data, pool_type="max", kernel=(2, 2), stride=(2, 2))

mx. sym. Unroll(l num_layer, seq_len, len, num_hidden, num_embed)

Queen

\[\cos(w, \text{queen}) = \cos(w, \text{king}) - \cos(w, \text{man}) + \cos(w, \text{woman}) \]

mx. sym. Embedding(data, input_dim, output_dim, k)
Declarative Programming

‘define then run’

```python
A = Variable('A')
B = Variable('B')
C = B * A
D = C + 1
f = compile(D)
d = f(A=np.ones(10), B=np.ones(10)*2)
```

PROS

- More chances for optimization
- Language independent
- E.g. TensorFlow, Theano, Caffe, MXNet Symbol API

CONS

- Less flexible
- ’Black box’ training

C can share memory with D because C is deleted later
DEMO: Symbol API

1 – Fully Connected Neural Network (MNIST)
2 – Convolution Neural Network (MNIST)
Imperative Programming

‘define by run’

import numpy as np
a = np.ones(10)
b = np.ones(10) * 2
c = b * a
d = c + 1

PROS
- Straightforward and flexible.
- Take advantage of language native features (loop, condition, debugger).
- E.g. Numpy, PyTorch, MXNet Gluon API

CONS
- Harder to optimize
DEMO: Gluon API

Fully Connected Network (MNIST)
Gluon CV: classification, detection, segmentation

[electric_guitar], with probability 0.671

https://github.com/dmlc/gluon-cv
DEMO: Gluon CV
Model Server for Apache MXNet (MMS) is a flexible and easy to use tool for serving Deep Learning models.

Use MMS Server CLI, or the pre-configured Docker images, to start a service that sets up HTTP endpoints to handle model inference requests.

https://github.com/awslabs/mxnet-model-server/
ONNX
OPEN NEURAL NETWORK EXCHANGE FORMAT
The new open ecosystem for interchangeable AI models

https://aws.amazon.com/blogs/ai/announcing-onnx-support-for-apache-mxnet/
Keras-MXNet

https://github.com/awslabs/keras-apache-mxnet
DEMO: Keras-MXNet

Convolutional Neural Network (MNIST)
Infrastructure for Deep Learning
Amazon EC2 C5 instances

C5: Next Generation Compute-Optimized Instances with Intel® Xeon® Scalable Processor

AWS Compute optimized instances support the new Intel® AVX-512 advanced instruction set, enabling you to more efficiently run vector processing workloads with single and double floating point precision, such as AI/machine learning or video processing.

25% improvement in price/performance over C4
Faster TensorFlow training on C5

Throughput (Images/sec)

- ResNet-50
- ResNet-152
- VGG16
- InceptionV3

Stock TensorFlow 1.6 binaries
TensorFlow 1.6 on AWS Deep Learning AMI

Amazon EC2 P3 Instances

The fastest, most powerful GPU instances in the cloud

• P3.2xlarge, P3.8xlarge, P3.16xlarge

• Up to eight NVIDIA Tesla V100 GPUs in a single instance
 • 40,960 CUDA cores, 5120 Tensor cores
 • 128GB of GPU memory

• 1 PetaFLOPs of computational performance – 14x better than P2

• 300 GB/s GPU-to-GPU communication (NVLink) – 9x better than P2
AWS Deep Learning AMI

Preconfigured environments to quickly build Deep Learning applications

<table>
<thead>
<tr>
<th>Conda AMI</th>
<th>Base AMI</th>
<th>AMI with source code</th>
</tr>
</thead>
<tbody>
<tr>
<td>For developers who want pre-installed pip packages of DL frameworks in separate virtual environments.</td>
<td>For developers who want a clean slate to set up private DL engine repositories or custom builds of DL engines.</td>
<td>For developers who want preinstalled DL frameworks and their source code in a shared Python environment.</td>
</tr>
</tbody>
</table>

https://aws.amazon.com/machine-learning/amis/
Amazon SageMaker

Pre-built notebooks for common problems

Built-in, high-performance algorithms

ALGORITHMS
- K-Means Clustering
- Principal Component Analysis
- Neural Topic Modelling
- Factorization Machines
- Linear Learner
- XGBoost
- Latent Dirichlet Allocation
- Image Classification
- Seq2Seq
- And more!

FRAMEWORKS
- Apache MXNet
- TensorFlow
- Caffe2, CNTK, PyTorch, Torch

Build

Set up and manage environments for training
Train and tune model (trial and error)
Deploy model in production
Scale and manage the production environment
Amazon SageMaker

Build
- Pre-built notebooks for common problems
- Built-in, high-performance algorithms

Train
- One-click training
- Hyperparameter optimization

Deploy model in production
Scale and manage the production environment
Amazon SageMaker

- Pre-built notebooks for common problems
- Built-in, high-performance algorithms
- One-click training
- Hyperparameter optimization
- One-click deployment
- Fully managed hosting with auto-scaling

Build | Train | Deploy
Open Source Containers for TF and MXNet

https://github.com/aws/sagemaker-tensorflow-containers
https://github.com/aws/sagemaker-mxnet-containers

• Build them and run them on your own machine

• Run them directly on a notebook instance (aka local mode)

• Customize them and push them to ECR

• Run them on SageMaker for training and prediction at scale
DEMO: SageMaker

1 – Use the built-in algorithm for image classification (CIFAR-10)
2– Bring your own Tensorflow script for image classification (MNIST)
3– Bring your own Gluon script for sentiment analysis (Stanford Sentiment Tree Bank 2)
4 – Build your own Keras-MXNet container (CNN + MNIST)
5 – Build your own PyTorch container (CNN + MNIST)
Danke schön!

https://aws.amazon.com/machine-learning
https://aws.amazon.com/blogs/ai

https://aws.amazon.com/sagemaker
https://github.com/awslabs/amazon-sagemaker-examples
https://github.com/aws/sagemaker-python-sdk
https://github.com/aws/sagemaker-spark

https://medium.com/@julsimon
https://youtube.com/juliensimonfr
https://gitlab.com/juliensimon/dlnotebooks

Julien Simon
Principal Technical Evangelist, AI and Machine Learning
@julsimon