Build your own Real Time Data Processing Platform in the Cloud for Connecting Millions of Things

Philipp Behre, Solutions Architect
Jan Metzner, EMEA Solutions Architect Mobile/IoT

@pbehre Berlin, April 12th 2016 @janmetzner
What to expect from this session

• How to Collect, store, and analyze data from small things in a big world?

• What tools are there for Data Engineers to build a cloud based data platform with AWS?

• How to Enable your business teams to make data informed decisions?

• How get smart support for people to make decisions with confidence based on near-real time predictions?

Next: Start creating !!
The Person has the context to decide
The Person has the context to decide

Analyze & decide
The Cloud make decisions with smart situational awareness

Monitor & have the final say

Enable smart decisions & act
One Example: Water Pipe
Connect – Secure – Integrate
AWS IoT: How it Works

AUTHENTICATION
Secure with mutual authentication and encryption

DEVICE SDK
Set of client libraries to connect, authenticate and exchange messages

DEVICE GATEWAY
Communicate with devices via MQTT and HTTP

RULES ENGINE
Transform messages based on rules and route to AWS Services

SHADOW
Persistent thing state during intermittent connections

REGISTRY
Identity and Management of your things

AWS IoT API

APPLICATIONS

AWS Services

3P Services
“If you can’t measure it, you can’t improve it”

-Lord Kelvin
analyze your data →
make data-informed decisions →
improve your processes
Three Types of Data-Driven Decision Making

- **Retrospective**
 Analyze historical trends to know what's happening in the app

- **Inquisitive**
 Discover latent user behavior to shape product or marketing decisions

- **Predictive**
 Anticipate user behavior to enhance experience
IoT-Data Architectures build out of AWS services
Primitives for IoT – with a focus on collect, store, analyze

AWS IoT
Amazon Kinesis
AWS Lambda

Amazon Machine Learning
Amazon Redshift
Amazon QuickSight
Amazon EMR

Amazon S3
Amazon DynamoDB
Amazon Elasticsearch Service
Understanding your data - People involved

• BI Analysts
• Data Engineers
• Application Developers
• Data Scientists
•

Actually ... everyone in your company making a decision!
• Primary tool is SQL
• Data is largely structured with well known data sources
• Primary concern is fast, consistent performance
• Need to extend SQL with custom functions
Data Engineer familiar with Hadoop and Spark

- Amazon EMR
- Spark
- ETL
- New Structured Data
- Amazon Redshift
- Integration
- Existing Structured Data
- Amazon Redshift
- Data Source
- Amazon Redshift
- Enrichment / Transformation
Data Scientist with existing toolsets

- Work with unstructured datasets
- Use existing toolsets to connect to Redshift
Example: Querying Redshift with R Packages

- **RJDBC** – supports SQL queries
- **dplyr** – Uses R code for data analysis
- **RPostgreSQL** - R compliant driver or Database Interface (DBI)

Application Developers can build smart applications using Amazon Machine Learning

- All skill levels
- Machine Learning technology is accessed through APIs / SDKs
- Embed visualizations in applications
Back to our water pipe ...
Instantly React – getting ‘smarter’
Smart Application – supporting people

1. sensors send data
2. Inbound stream (raw data)
3. time-series aggregation*
4. write aggregate & trigger event
5. process event

* https://github.com/awslabs/amazon-kinesis-aggregators
Follow up and capture results

1. follow up
2. Capture result & activity
3. Frequently load to S3
Collect business and contextual data – learn and improve

1. Store additional data
2. Transform and load
3. Let apps query data
4. Let people query data
5. Re-train prediction model
The Cloud make decisions with smart situational awareness
Start building !!!

monitor

make decisions
Resources

AWS IoT Landing Page: http://aws.amazon.com/iot

YouTube Channels/Playlist:

Start building today!!